
Object Avoidance Using Dynamic Programming,

Full State Observer and Pole Placement.
 

 

by Benjamin Brandwin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vivek yadav
1- 22
2- 22
3- 20
4- 20
5- 20
BONUS: 10
TOTAL: 114


vivek yadav
GOOD JOB



Problem Formulation

Object Avoidance by autonomous systems is of increasing importance in todays technology. With
the advent of self-drving cars and Amazon's dream to deliver packages via self-driven autonomous
UAV's, basic object avoidance and navigation by autonomous systems has a become a highly valuable
research undertaking.

In this paper we will explore multiple object avoidance using dynaimc programing to determine the
shortest path through a maze of obstacles, and then design a full-state observer and controller using
pole placement with error intergator and controller dynamics to follow a time dependant trajectory and
navigate the maze autonomously.

We take our system dynamics to be that of a point mass subject to

with

 

where we have

 

 

vivek yadav
Ux and Uy both should have first order 
dynamics, not just 1

vivek yadav
Your x-y-  has no U



 

 

 

 

 

 

 

 

 

 

 

Part 1: Setup

In the first part we begin by constructing a 10x10 grid with discretizations at 0.1 along the X and Y
axis, as well as obstacles. The Setup code initializes various parameters including the max and min
values for x and y, the starting position and goal for the robot, as well as initializing a matrix to represent
obstacles and well as a matrix to represent the "distance-to-go" at each discretized point in the grid.
This code also sets up a "buffer zone" around all of the obstacles to prevent our robot from coming too
close to the walls of the maze.

vivek yadav
U_x and U_y, what is u? 



���
����������
����	����

���
�

 

Part 2 : Value Iteration Matrix (Dynamic Programming)

In the next section we apply dynamic programming to create our "cost-to-go" matrix which asigns values
to each point in the maze according to the minimum number of steps required to go from that point to
the goal. Pseudocode is as follows :

• Initialization
• Set cost-to-go, J to a large value.
• Discretize state-action pairs
• Set cost-to-go as 0 for the goal.
• Set point_to_check_array to contain goal.

 

• Repeat until no-values are updated,
• For each element in the grid, take all the possible actions and compute the incurred costs.
• For each action, compute the cost-to-go of the new state.
• Update self if cost-to-go of the new state plus action is lower than current cost-to-go.

vivek yadav
NICE




The resulting map creates a "ramp" of desending values in between the obstacles as we get closer to
the goal. This value map can then be used to generate the shortest distance to the goal from any point
in the maze.

����	����
�	�����

Part 3: Path Generation

In the next section we generate a path through the maze. Using the value map generated in part 2
we can start at any point in the map and at each step examine all neighbors. We then simply add the
neighbor with the lowest value to our desired path. A gradient descent algorithm is then used to smooth
the path and place points at equal distances along the curve. In doing so we ensure that the velocity
of our point mass remains fairly constant as it turns around corners of the maze. The gradient descent
algorithm is as follows:

 

iterated from 2 to N-1 where N is the number of points in the curved path. The buffer zone created in our
setup ensures that our curved path does not intersect any obstacles

����	���������
��	��������



Part 4 and 5: Observer and Controller Design

In the next section a full state observer is used along with a controller design using pole placement
to track a time dependant setpoint. A full state observer was chosen as it has a slightly easier
implemetation than other methods and should be sufficiently accurate for the purposes of this task.

Our observer estimate is

where

after some algebra we find that

we can use pole placement to produce an L that places the eigen values of  at negative
values, thus sending  as . By placing the poles of our observer at larger negative values
than our controller we converge the observer results much quicker than the actuator can respond,
resulting in better control.

����	�������	���

vivek yadav
NICE






Above we can see that our full state observer and controller track the setpoint nicely and do not run into
any walls. Our actuator dynamic was chosen (after some trial and error) to keep the maximum values of
the actuator command between -1 and 1. However, we can see that our velocity jumps to over 2 initially
and afterwards is extremely jagged. The required control signal is jagged as a result jumping up and
down very quickly.

 

One thing we can do to reduce the maximum velocity as well as smooth the curve is to add in friction.
A frictional force will result in a terminal velocity for a given input, and should limit our system response.
Our new dynamics equation then becomes

integrating we find

We can see from this equation that as ,  . As such the controller can much more easily

track a velocity setpoint as any value of constant velocity will have a constant input value. Discretizing
the frictional force our new state space dynamics matrices become

 

vivek yadav
THIS PART CAN BE IMPLEMENTED BY INCREASING GAIN ON VELOCITY TERM. THIS IS NOT FRICTION, THIS IS  LIKE ADDING DAMPING TERM. 

vivek yadav
Text

vivek yadav




 

 

 

With b = 5 we have

����	�������	����	�������





Concluding Remarks

Above we can see that the addition of friction dramatically smooths out both the velocity, and the
required actuator signal. We can see that the required signal is both lower in magnitude and much
less jittery. As for the velocity, we can see immediately that the maxmium velocity stays below 2.
Additionally, our controller is much better at cornering, which is to be expected, considering the frictional
force should effectively slow down the point mass around turns. We can also note that while the friction
model follows better around corners, the model without friction is much better at reaching set-point on
the straight-aways. This is also to be expected as both models asymtoticly approach set-point, however,
the friction model has a larger time constant and as a result takes much longer to reach setpoint for
small deviations along straight paths.

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

References

 

1) https://mec560sbu.github.io

2) https://drive.google.com/drive/u/1/folders/0B51BYOSh3EKQMTEzMEdmOXJ1dzg

3) Fowles & Cassiday, Analytical Mechanics, Brooks/Cole, Boston, 2005

 

 

 

 

 

 

 


